shade lab
understanding the rules of microbiome resilience
![]() Happy 7th Labiversary!After missing our 6th Labiversary party due to the COVID19 pandemic, the ShadeLab celebrated its 7th Labiversary in July 2021. | ![]() We've grown! We've moved!Abby and Keara, be-masked and socially distant in our new lab in rm 6144/6150 Biomedical Physical Sciences Building! | ![]() Happy 5th Labiversary!Dufour and Shade lab members and their families celebrated our 5th Labiversary at Michigan State in July 2019 |
---|---|---|
![]() Sun peaks through the miscanthusOur lab studies how microbes may be harnessed to help bioenergy crops grow on marginal lands. | ![]() Photosynthesis!False-colored image of Arabidopsis plants taken in MSU's Center for Advanced Algal and Plant Phenotyping. Axenic plants were inoculated with different combinations of core members of the phyllosphere community. | ![]() "Rhizotrons" of common beanWe want to understand relationships between plants, soil, and microbes. |
![]() Centralia, PAThe landscape of Centralia - barren rock with steaming active vents adjacent to early successional vegetation. | ![]() Leaf isolates from switchgrassLeaf surfaces are harsh environments. How do the microbes that live on leaves benefit plants? | ![]() EDAMAME2015The Explorations in Data Analysis for Metagenomic Advances in Microbial Ecology course at Kellogg Biological Station in 2015, posing as a double helix. Photo credit: Tom Rayner, @tomonlocation |
![]() MSU Biomedical Physical SciencesMSU offers a fantastic environment for research in microbial ecology! | ![]() ArsenicResistantBacteriaPhenotypic diversity among colonies of arsenic-resistant bacteria isolated from soil. Photo credit: Taylor Dunivin. | ![]() Arabidopsis seedlingsWe want to understand how microbes communicate with each other and with their host plants using chemical signals. |
![]() Charismatic methylobacterium!A commensal member of the Arabidopsis phyllosphere microbiome. | ![]() Community metabolite extractionIn the ShadeLab, we use community metabolomics to understand microbial interactions. | ![]() Group Photo Fall 2017 |
Welcome to the website of Ashley Shade's research team at Michigan State University!
#ShadeLab #SpartansWill
Microbial communities (also called microbiomes) are composed of up to tens of thousands of different types of microbial members. These communities perform functions that are absolutely essential for their ecosystems, from nutrient cycling in the environment, to priming the immune system in a plant or animal host. Many of these functions are supported by the collective community, which is why it is important to consider the microbiome as a system with many interacting parts.
In our research, we investigate the ecology and evolution of microbiomes. In particular, we want to understand how microbial communities respond to stress so that we can manage them to quickly recover. The capacity to recover quickly and fully from a large stress is called resilience. Understanding the rules of microbiome resilience will help to support healthy outcomes for hosts and environments by stabilizing the essential functions that microbial communities perform.
We want to understand:
-
how microbial diversity can support resilience;
-
the microbial traits and mechanisms that promote resilient communities;
-
how to predict a fundamental shift in microbiome performance, and to intervene in advance to prevent the shift
-
the importance of functional redundancy - when more than one microbial population can perform identically- for stable microbiome performance; and
-
how interactions among microbiome members influence resilience.